Fresnel Lens Gamma Ray Telescope

Flight Dynamics

Steven Cooley Greg Marr Charles Petruzzo Scott Starin January 10, 2002

Flight Dynamics Topics

♦ Summary

- PI-proposed mission orbit description
- Formation initialization
- Formation station-keeping
- Formation re-orientation to next target
- Future work
- ◆ Detailed Information

PI-Proposed Mission Orbit Description

◆ Desired Characteristics

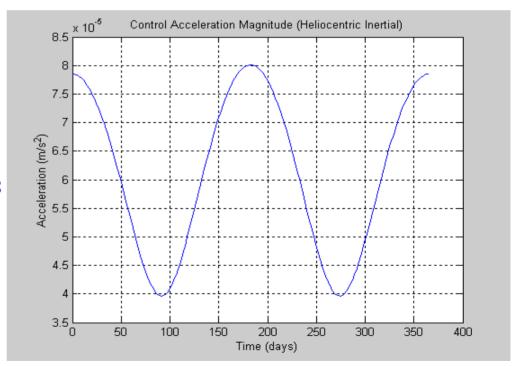
- Two S/C in formation, 106 km apart
- Maintain inertial orientation of SC-to-SC line for 2 week observation
- One SC follows a circular, heliocentric orbit
- Other SC follows a shifted, circular, heliocentric trajectory with orbit plane parallel to the plane of the first SC
 - Center of shifted trajectory lies on the Sun-target line 106 km from Sun

Driving Requirements

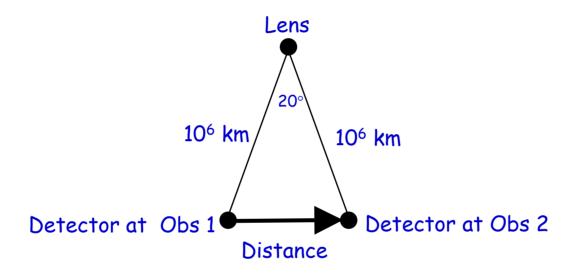
- Time allocated for reorienting the SC-to-SC line
- SC-to-SC line remains inertially fixed during observation
- Orbit control and knowledge requirements are not addressed in this analysis

Formation Initialization

- ♦ One LV with a C3 of 0.4 km²/s²
 - \bullet Needed to put the trajectories beyond Earth's sphere of influence (SOI is ~106 km) Relatively Quickly
- ♦ One SC is maneuvered to the shifted orbit having origin 106 km away from the other's origin
 - Two (High Thrust) Burn Option requires ~370 m/s total ΔV (two impulsive maneuvers, 3 months apart)
 - Low-thrust Option requires further analysis and could require more than twice the High Thrust total ΔV . (Analyze Initialization Duration vs. Thrust Levels Required.)



Formation Station-Keeping


- ◆ Apply control accelerations continuously to maintain the inertial orientation of the SC-to-SC line
 - ~50 m/s per week, max
 - Only Solar Gravity Modeled
- Maximum control accelerations are needed when the trajectories are coplanar (it's counter-intuitive)
 - 4×10^{-5} to 8×10^{-5} m/s²
 - 40 to 80 milli-newton thrust for a 1000 kg SC

Control acceleration magnitude -vstime since station-keeping starts

Formation Re-Orientation Free Space Analysis (1/3)

- \bullet Preliminary results: for "small" reorientation times (< 3 weeks), solar gravity has "small" effect on ΔV costs
- ♦ Free space analysis (ie, gravity free) is a reasonable approximation for small reorientation times

Formation Re-Orientation Free Space Analysis (2/3)

◆ Impulsive Burn Analysis

- One burn after obs 1 initiates translation of detector to the obs 2 location
 - Magnitude: $\Delta V_{Impulse}$ = distance / reorientation time
- Equal but opposite burn stops translation when obs 2 location is reached
- Total ΔV = 2* ΔV_{Impulse}

♦ Continuous Thrust Analysis

- Acceleration is constant toward obs2 location for first half of the time
- Acceleration is of the same magnitude, but reversed for the remaining time
- Total ΔV (m/s) = $4*\Delta V_{impulse}$
- Acceleration = $4*\Delta V_{impulse}$ / reorientation time

Formation Re-Orientation Free Space Analysis (3/3)

	1 Week Impulsive	1 Week Continuous	3 Week Impulsive	3 Week Continuous	
Total ∆V (m/s)	1150	2300	383	766	
Acceleration (m/s²)	N/A	3.8 e-3	N/A	0.42 e-3	
Thrust (1000 kg <i>SC</i>) (N)	N/A	3.8	N/A	0.42	

Formation Re-Orientation Lambert Problem (ie, gravity present)

- ullet Calculate ΔV Needed to Move (20°) From Observation 1 to Observation 2 Under Solar Gravity ONLY
- ◆ Target Phase Angle of Shifted (Controlled) Orbit Chosen to Equal Phase Angle of Non-Shifted (Free-Flying) Orbit
- ◆ Chart Below Uses VERY Rough Approximations

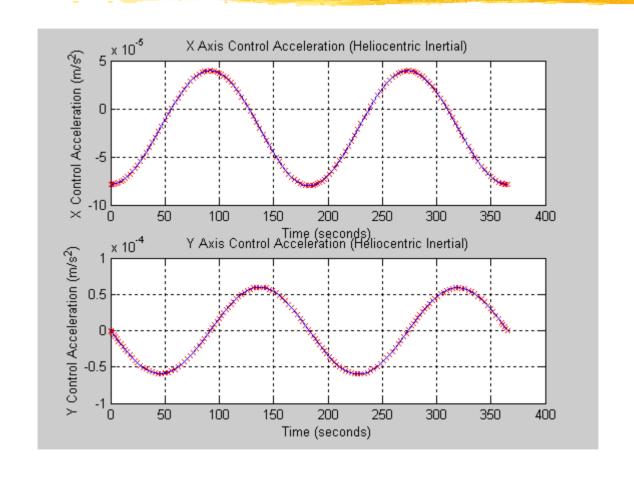
Reorientation Time	Free Space $\triangle V$ (Impulsive) Approx. (m/s)	Lambert △V (Impulsive) (m/s)	"Lambert" △V (Continuous) (m/s)	Best Contin. Accel (m/s²)	Best Contin. Thrust (N) (750 kg)
3 Weeks	383	415	830	0.46 e-3	0.34
4 Weeks	287	352	704	0.29 e-3	0.22
5 Weeks	230	334	668	0.22 e-3	0.17
6 Weeks	191	335	670	0.19 e-3	0.14

Future Work

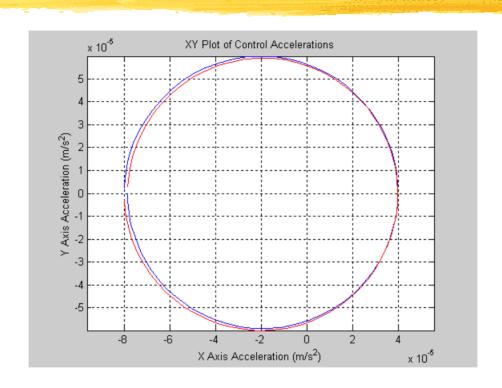
- ◆ Extensive basic orbit design work needed (including low thrust simulations)
- ◆ Alternate mission orbits
- * Ability to meet orbit control requirements (model all significant external forces and their uncertainties)
- ◆ Ability to meet orbit knowledge requirements
- ◆ Effect of orbit drift-away rate (~0.1 AU per year)
- ◆ Use of 3 or more spacecraft
- ◆ Consider Putting Both Detector and Lens SC in a Shifted Orbit
- ◆ Effect of decreasing SC separation (less acceleration needed but increased orbit control/knowledge required)
- ◆ Development of Formation Initialization, Station-Keeping, & Re-Orientation Algorithms

Fresnel Lens Gamma Ray Telescope

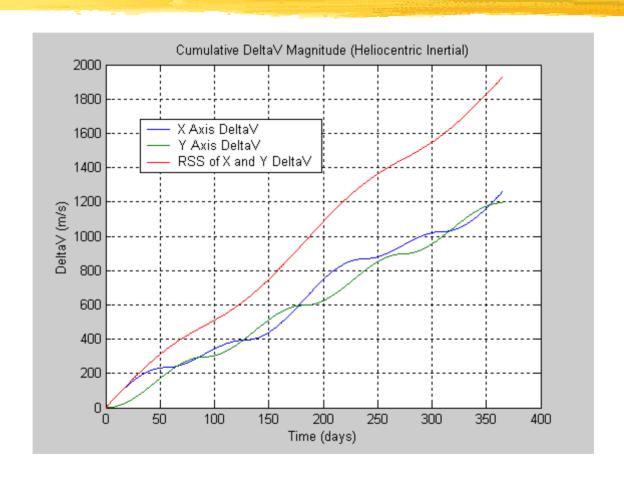
Detailed Information


Flight Dynamics Topics

- * Station Keeping Accelerations Ecliptic Target
- * Additional Trades to Consider Alternate Mission Orbits
- ◆ Formation Re-OrientationFree Space Analysis Revisited
- ◆ Additional △V Analysis
- ♦ Notes


Station Keeping Accelerations - Ecliptic Target (1 of 3)

Station Keeping Accelerations - Ecliptic Target (2 of 3)



- * XY Plot of Accelerations for 1 Year
- Acceleration Vector "Rotates" Twice for One Rotation of Earth about Sun (1 Yr)

Station Keeping Accelerations - Ecliptic Target (3 of 3)

2 km/s per Year (Stay on Target All Year)

Additional Trades to Consider - Alternate Mission Orbits

- ♦ Extensive Analysis Required
- ◆ Possible Alternate Mission Orbits (Credit: Dave Folta)
 - Artificial Libration Point-Type Orbit with Solar Sails.
 Reference: A. McInnes, Strategies for Solar Sail Mission Design in the Circular Restricted Three-Body Problem, MS Thesis, Purdue University, August 2000.
 - Distant Retrograde Orbits.
 Reference: O. C. St. Cyr, et. al., Space Weather Diamond: a four spacecraft monitoring system, Journal of Atmospheric and Solar-Terrestial Physics, Vol. 62, No. 14, pp. 1251-1255, (2000).

Formation Re-Orientation Free Space Analysis Revisited

◆ Impulsive Analysis

- One Burn at Observation 1 (Magnitude V1) & One Burn (Same Magnitude, Opposite Direction) at Observation 2
- $V1 (m/s) = Distance (m) / t_0 (s)$
- Total ΔV (m/s) = 2 V1 = 2 * Distance (m) / t_0 (s) (t_0 is time to re-orient)

◆ Continuous Thrust Analysis

- Acceleration is a positive constant (magnitude A) from t = 0 to $t = t_0/2$
- Acceleration is a negative constant (same magnitude) from time t_0 /2 to time, t_0
- At time, t=0 & t = t₀, Velocity is 0
- At time, $t = t_0/2$, Velocity reaches a maximum of $V2 = 2 V1 = 2 * Distance /t_0$
- Total ΔV (m/s) is Twice that of Impulsive Case: 4 * Distance / t_0
- A = Distance / $(t_0/2)^2$ = 2 V2 / t_0 = 4 V1 / t_0

Additional ΔV Analysis

- Simulation Parameters
 - $C3 = 0.4 \text{ km}^2/s^2$
 - Earth and Solar Gravity Modeled
- ◆ Formation Initialization (RA=195.7, DEC=-63.8)
 - 2 Impulsive maneuvers, 42 days apart, 530 m/s
- ◆ Target 1 Station-Keeping
 - 43 m/s for 15 days (numerous impulsive maneuvers)
- ♦ Re-Orientation to Target 2 (RA=195.7, DEC=-43.8)
 - 2 Impulsive maneuvers, 7 days apart, 1140 m/s
 - 2 Impulsive maneuvers, 21 days apart, 390 m/s
- ◆ Target 2 Station-Keeping
 - 65 m/s for 15 days (numerous impulsive maneuvers)

Notes

- 1) ΔV Numbers Quoted are Magnitudes. "Applied ΔV " Magnitude Will Increase If Thrusters are not Aligned along ΔV Direction
- 2) As Formation Re-Orientation or Formation Initialization time increases, the magnitudes of the 2 Lambert maneuvers become different. Particularly for Formation Initialization, this may increase the magnitude of the Low Thrust acceleration needed.
- 3) Stopping the 0.1 AU/year drift will require propulsion on all SC in the formation.
- 4) A C3 of of $0.4 \text{ km}^2/\text{s}^2$ Results in a 3 e6 km separation from Earth at approximately L + 30 days.

